Poly-ɛ-caprolactone composite scaffolds for bone repair
نویسندگان
چکیده
منابع مشابه
Nanocalcium-deficient hydroxyapatite–poly (ɛ-caprolactone)–polyethylene glycol–poly (ɛ-caprolactone) composite scaffolds
A bioactive composite of nano calcium-deficient apatite (n-CDAP) with an atom molar ratio of calcium to phosphate (Ca/P) of 1.50 and poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) (PCL-PEG-PCL) was synthesized, and a composite scaffold was fabricated. The composite scaffolds with 40 wt% n-CDAP contained well interconnected macropores around 400 μm, and exhibited a porosity of 7...
متن کاملElectrospun chitosan-graft-poly (ɛ-caprolactone)/poly (ɛ-caprolactone) nanofibrous scaffolds for retinal tissue engineering
A promising therapy for retinal diseases is to employ biodegradable scaffolds to deliver retinal progenitor cells (RPCs) for repairing damaged or diseased retinal tissue. In the present study, cationic chitosan-graft-poly(ɛ-caprolactone)/polycaprolactone (CS-PCL/PCL) hybrid scaffolds were successfully prepared by electrospinning. Characterization of the obtained nanofibrous scaffolds indicated ...
متن کاملBiodegradation and bioresorption of poly(ɛ-caprolactone) nanocomposite scaffolds.
A new type of hybrid three-dimensional scaffolds was prepared using poly(ɛ-caprolactone) (PCL) and chitosan-modified montmorillonite by solvent casting and particulate leaching method. The scaffolds were characterized by scanning electron microscopy coupled with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and dynamic mechanical analysis to study the structural and mechanical ...
متن کاملNano-hydroxyapatite/poly -caprolactone composite 3D scaffolds for mastoid obliteration
The aim of this study is to evaluate the use of our nano-HA/PCL composite 3D scaffolds as graft materials for mastoid cavity obliteration in an animal model. Nano-HA particles were synthesized by chemical precipitation technique and mixed them with PCL solution to make composite paste. 3D scaffolds were fabricated by a paste extruding deposition process. The nano-HA/PCL 3D scaffolds showed good...
متن کاملNanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells.
Musculoskeletal tissue engineering aims at repairing and regenerating damaged tissues using biological tissue substitutes. One approach to achieve this aim is to develop osteoconductive scaffolds that facilitate the formation of functional bone tissue. We have fabricated nanoclay-enriched electrospun poly(ɛ-caprolactone) (PCL) scaffolds for osteogenic differentiation of human mesenchymal stem c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Molecular Medicine
سال: 2014
ISSN: 1107-3756,1791-244X
DOI: 10.3892/ijmm.2014.1954